Manipulation of Spin-Orbit Torque in Tungsten Oxide/Manganite Heterostructure by Ionic Liquid Gating and Orbit Engineering

ACS Nano. 2023 Dec 12;17(23):23626-23636. doi: 10.1021/acsnano.3c06686. Epub 2023 Nov 21.

Abstract

Spin-orbit coupling (SOC) is the interaction between electron's spin and orbital motion, which could realize a charge-to-spin current conversion and enable an innovative method to switch the magnetization by spin-orbit torque (SOT). Varied techniques have been developed to manipulate and improve the SOT, but the role of the orbit degree of freedom, which should have a crucial bearing on the SOC and SOT, is still confusing. Here, we find that the charge-to-spin current conversion and SOT in W3O8-δ/(La, Sr)MnO3 could be produced or eliminated by ionic liquid gating. Through tuning the preferential occupancy of Mn/W-d electrons from the in-plane (dx2-y2) to out-of-plane (d3z2-r2) orbit, the SOT damping-like field efficiency is nearly doubled due to the enhanced spin Hall effect and interfacial Rashba-Edelstein effect. These findings not only offer intriguing opportunities to control the SOT for high-efficient spintronic devices but also could be a fundamental step toward spin-orbitronics in the future.

Keywords: all-oxide heterostructure; magnetization switching; orbital occupancy state; spin−orbit torque; strain engineering.