Scaffold-Guided Crystallization of Oriented α-FAPbI3 Nanowire Arrays for Solar Cells

ACS Appl Mater Interfaces. 2023 Dec 6;15(48):56127-56137. doi: 10.1021/acsami.3c09434. Epub 2023 Nov 21.

Abstract

Perovskite nanowire arrays with large surface areas for efficient charge transfer and continuous highly crystalline domains for efficient charge transport exhibit ideal morphologies for solar-cell active layers. Here, we introduce a room temperature two-step method to grow dense, vertical nanowire arrays of formamidinium lead iodide (FAPbI3). PbI2 nanocrystals embedded in the cylindrical nanopores of anodized titanium dioxide scaffolds were converted to FAPbI3 by immersion in a FAI solution for a period of 0.5-30 min. During immersion, FAPbI3 crystals grew vertically from the scaffold surface as nanowires with diameters and densities determined by the underlying scaffold. The presence of butylammonium cations during nanowire growth stabilized the active α polymorph of FAPbI3, precluding the need for a thermal annealing step. Solar cells comprising α-FAPbI3 nanowire arrays exhibited maximum solar conversion efficiencies of >14%. Short-circuit current densities of 22-23 mA cm-2 were achieved, on par with those recorded for the best-performing FAPbI3 solar cells reported to date. Such large photocurrents are attributed to the single-crystalline, low-defect nature of the nanowires and increased interfacial area for photogenerated charge transfer compared with thin films.

Keywords: crystal orientation; nanoconfinement; nanowire; perovskite; solar cell.