Phonon-mediated superconductivity in [Formula: see text] compounds: a crystal prediction via cluster expansion and particle-swarm optimization

Sci Rep. 2023 Nov 20;13(1):20295. doi: 10.1038/s41598-023-44632-3.

Abstract

Investigating superconductivity represents one of the most significant phenomena in the field of condensed matter physics. Our simulations aim to elucidate the structures in the metallic state of Mg1-xMoxB2, which is essential for predicting their superconducting properties. By employing a first-principle cluster expansion and particle-swarm optimization, we have predicted the structures of Mg1-xMoxB2 ternary alloys, including Mg0.667Mo0.333B2, Mg0.5Mo0.5B2, and Mg0.333Mo0.667B2, and have determined their thermodynamically stable configurations under both atmospheric and high-pressure conditions. To investigate the potential for superconductivity in these structures, we have conducted a detailed examination of electronic properties that are pertinent to determining the superconducting state. Regarding superconducting properties, Mg0.333Mo0.667B2 exhibits superconductivity with a critical temperature (Tc) of 7.4 K at ambient pressure. These findings suggest that the theoretically predicted structures in Mg/Mo-substituted metal borides could play a significant role in synthesis and offer valuable insights into superconducting materials.