Effects of straw return with potassium fertilizer on the stem lodging resistance, grain quality and yield of spring maize (Zea mays L.)

Sci Rep. 2023 Nov 20;13(1):20307. doi: 10.1038/s41598-023-46569-z.

Abstract

This experiment aimed to study the effects of straw return combined with potassium fertilizer on stem lodging resistance, grain quality, and yield of spring maize. The objective was to provide a scientific basis for the rational utilization of Inner Mongolia spring maize straw and potassium fertilizer resources. The test material used was 'Xianyu 335', and the study was conducted in three ecological regions from east to west of Inner Mongolia (Tumochuan Plain Irrigation Area, Hetao Plain Irrigation Area, and Lingnan Warm Dry Zone). A split-plot design was employed, with the straw return method as the main plot and potassium fertilizer dosage as the secondary plot. We determined the stem resistance index, grain quality, and yield. The results showed that both straw return and potassium application improved stem lodging resistance, grain quality, and maize yield. Combining straw return with the reasonable application of potassium fertilizer enhanced the effectiveness of potassium fertilizer, increased lodging resistance, maize yield, and improved grain quality and yield stability. Under the straw return treatment, with potassium application compared to no potassium application, significant increases were observed in maize plant height, stem diameter, dry weight of stems, stem compressive strength, stem bending strength, grain protein content, yield, straw potassium accumulation content, and soil available potassium content. These increases were up to 30.79 cm, 2.63 mm, 15.40 g, 74.93 N/mm2, 99.65 N/mm2, 13.68%, 3142.43 kg/hm2, 57.97 kg/hm2, and 19.80 mg/kg, respectively. Therefore, the interaction of straw return and potassium fertilizer was found to be the most effective measure for maintaining high-yield and stress-resistant cultivation, improving grain quality, and optimizing the management of straw and potassium fertilizer resources. This approach is suitable for promotion and application in the spring maize growing areas of Inner Mongolia.

MeSH terms

  • Agriculture
  • China
  • Edible Grain
  • Fertilizers*
  • Nitrogen
  • Plant Structures
  • Potassium
  • Soil
  • Zea mays*

Substances

  • Fertilizers
  • Potassium
  • Soil
  • Nitrogen