Potential application of phage vB_EfKS5 to control Enterococcus faecalis and its biofilm in food

AMB Express. 2023 Nov 20;13(1):130. doi: 10.1186/s13568-023-01628-6.

Abstract

Contaminated food with antibiotic-resistant Enterococcus spp. could be the vehicle for transmitting Enterococcus to humans and accordingly cause a public health problem. The accumulation of biogenic amines produced by Enterococcus faecalis (E. faecalis) in food may have cytological effects. Bacteriophages (phage in short) are natural antimicrobial agents and can be used alone or in combination with other food preservatives to reduce food microbial contaminants. The aim of this study was to isolate a novel phage against E. faecalis and determine its host range to evaluate its potential application. Bacteriophage, vB_EfKS5, with a broad host range, was isolated to control the growth of E. faecalis. The vB_EfKS5 genome is 59,246 bp in length and has a GC content of 39.7%. The computational analysis of phage vB_EfKS5 genome confirmed that it does not contain any lysogenic, toxic, or virulent genes. Phage vB_EfKS5 exhibited lytic activity against most E. faecalis isolates with different multiplicities of infections and it infected 75.5% (22/29) of E. faecalis isolates and 42.3% (3/7) of E. faecium isolates. It was also able to destroy the biofilm formed by E. faecalis with different MOIs. Phage vB_EfKS5 alone or in combination with nisin could control the growth of E. faecalis in broth and milk. Based on its high productivity, stability, short latent period, and large burst size, phage vB_EfKS5 has a high potential for applications both in food and medical applications.

Keywords: Bacteriophages; Biofilm; Enterococcus faecalis; Food application; Nisin.