Coronary microvascular dysfunction in Takotsubo syndrome: an analysis using angiography-derived index of microcirculatory resistance

Clin Res Cardiol. 2023 Nov 20. doi: 10.1007/s00392-023-02329-7. Online ahead of print.

Abstract

Background: Coronary microvascular dysfunction (CMD) has been proposed as a crucial factor in the pathophysiology of Takotsubo syndrome (TTS). The angiography-derived index of microcirculatory resistance (caIMR) offers an alternative to conventional hyperemic wire-based IMR to assess CMD. We aimed to evaluate CMD's prevalence, transience, and impact on in-hospital outcomes in TTS.

Methods: All three coronary arteries of 96 patients with TTS were assessed for their coronary angiography derived Index of microcirculatory Resistance (caIMR) and compared to non-obstructed vessels of matched patients with ST-elevation myocardial infarction. Further, the association between caIMR and the TTS-specific combined in-hospital endpoint of death, cardiac arrest, ventricular arrhythmogenic events and cardiogenic shock was investigated.

Results: Elevated IMR was present in all TTS patients, with significantly elevated caIMR values in all coronary arteries compared to controls. CaIMR did not differ between apical and midventricular TTS types. CaIMR normalized in TTS patients with follow-up angiographies performed at a median of 28 months (median caIMR at event vs follow-up: LAD 34.8 [29.9-41.1] vs 20.3 [16.0-25.3], p < 0.001; LCX: 38.7 [32.9-50.1] vs 23.7 [19.4-30.5], p < 0.001; RCA: 31.7 [25.0-39.1] vs 19.6 [17.1-24.0], p < 0.001). The extent of caIMR elevation significantly correlated with the combined in-hospital endpoint (p = 0.036).

Conclusion: TTS patients had evidence of elevated caIMR in at least one coronary artery with a trend towards higher LAD caIMR in apical type TTS and normalization after recovery. Furthermore, extent of caIMR elevation was associated with increased risk of in-hospital MACE of TTS patients.

Keywords: Angiography-derived IMR; Coronary microvascular dysfunction; Index of microcirculatory resistance; Takotsubo syndrome.