Epigenetic profiles guide improved CRISPR/Cas9-mediated gene knockout in human T cells

Nucleic Acids Res. 2024 Jan 11;52(1):141-153. doi: 10.1093/nar/gkad1076.

Abstract

Genetic modification of specific genes is emerging as a useful tool to enhance the functions of antitumor T cells in adoptive immunotherapy. Current advances in CRISPR/Cas9 technology enable gene knockout during in vitro preparation of infused T-cell products through transient transfection of a Cas9-guide RNA (gRNA) ribonucleoprotein complex. However, selecting optimal gRNAs remains a major challenge for efficient gene ablation. Although multiple in silico tools to predict the targeting efficiency have been developed, their performance has not been validated in cultured human T cells. Here, we explored a strategy to select optimal gRNAs using our pooled data on CRISPR/Cas9-mediated gene knockout in human T cells. The currently available prediction tools alone were insufficient to accurately predict the indel percentage in T cells. We used data on the epigenetic profiles of cultured T cells obtained from transposase-accessible chromatin with high-throughput sequencing (ATAC-seq). Combining the epigenetic information with sequence-based prediction tools significantly improved the gene-editing efficiency. We further demonstrate that epigenetically closed regions can be targeted by designing two gRNAs in adjacent regions. Finally, we demonstrate that the gene-editing efficiency of unstimulated T cells can be enhanced through pretreatment with IL-7. These findings enable more efficient gene editing in human T cells.

MeSH terms

  • CRISPR-Cas Systems* / genetics
  • Gene Editing
  • Gene Knockout Techniques*
  • Humans
  • T-Lymphocytes* / metabolism