Exploring the bioactivity of reduced graphene oxide and TiO2 nanocomposite for the regenerative medicinal applications

Med Eng Phys. 2023 Nov:121:104061. doi: 10.1016/j.medengphy.2023.104061. Epub 2023 Oct 12.

Abstract

Millions of people globally suffer from issues related to chronic wounds due to infection, burn, obesity, and diabetes. Nanocomposite with antibacterial and anti-inflammatory properties is a promising material to promote wound healing. This investigation primarily aims to synthesize reduced graphene oxide and titanium dioxide (rGO@TiO2) nanocomposite for wound healing applications. The rGO@TiO2 nanocomposite was synthesized by the one-step hydrothermal technique, and the physicochemical characterization of synthesized nanocomposite was performed by X-ray diffraction, Fourier transforms infrared spectroscopy, Raman spectroscopy, scanning electron microscopy, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy, and dynamic light scattering. Further, the nanocomposite antibacterial, cytotoxicity, and wound-healing properties were analyzed by disc diffusion method, MTT assay, and in vitro scratch assay, respectively. Based on the TEM images, the average particle size of TiO2 nanoparticles was around 9.26 ± 1.83 nm. The characteristics peak of Ti-O-Ti bonds was observed between 500 and 850 cm-1 in the Fourier transforms infrared spectrum. The Raman spectrum of graphene oxide (GO) was obtained for bands D and G at 1354 cm-1 and at 1593 cm-1, respectively. This GO peak intensity was reduced in rGO, revealing the oxygen functional group reduction. Moreover, the rGO@TiO2 nanocomposite exhibited dose-dependent antibacterial properties against the positive and negative bacterium. The cytotoxicity for 5-100 µg/mL of rGO@TiO2 nanocomposite was above the half-maximal inhibitory concentration value. The in vitro scratch assay for rGO@TiO2 indicates that the nanocomposite promotes cell proliferation and migration. The nanocomposite recovered the wound within 48 h. The rGO@TiO2 nanocomposite shows potential materials for wound healing applications.

Keywords: Antibacterial test; Cell proliferation; Metal oxide; Reduced graphene oxide; Wound healing.

MeSH terms

  • Anti-Bacterial Agents / pharmacology
  • Humans
  • Nanocomposites* / chemistry
  • Oxides* / chemistry
  • Oxides* / pharmacology

Substances

  • graphene oxide
  • Oxides
  • titanium dioxide
  • Anti-Bacterial Agents