Structural basis of Irgb6 inactivation by Toxoplasma gondii through the phosphorylation of switch I

Genes Cells. 2024 Jan;29(1):17-38. doi: 10.1111/gtc.13080. Epub 2023 Nov 20.

Abstract

Irgb6 is a priming immune-related GTPase (IRG) that counteracts Toxoplasma gondii. It is known to be recruited to the low virulent type II T. gondii parasitophorous vacuole (PV), initiating cell-autonomous immunity. However, the molecular mechanism by which immunity-related GTPases become inactivated after the parasite infection remains obscure. Here, we found that Thr95 of Irgb6 is prominently phosphorylated in response to low virulent type II T. gondii infection. We observed that a phosphomimetic T95D mutation in Irgb6 impaired its localization to the PV and exhibited reduced GTPase activity in vitro. Structural analysis unveiled an atypical conformation of nucleotide-free Irgb6-T95D, resulting from a conformational change in the G-domain that allosterically modified the PV membrane-binding interface. In silico docking corroborated the disruption of the physiological membrane binding site. These findings provide novel insights into a T. gondii-induced allosteric inactivation mechanism of Irgb6.

Keywords: Irgb6; Toxoplasma gondii; allosteric conformational change; immune-related GTPase; phosphorylation; x-ray crystallography.

MeSH terms

  • GTP Phosphohydrolases / genetics
  • GTP Phosphohydrolases / metabolism
  • Phosphorylation
  • Toxoplasma* / metabolism
  • Vacuoles / metabolism

Substances

  • GTP Phosphohydrolases