Trophic transfer and their impact of microplastics on estuarine food chain model

J Hazard Mater. 2024 Feb 15:464:132927. doi: 10.1016/j.jhazmat.2023.132927. Epub 2023 Nov 4.

Abstract

Microplastic contamination in marine ecosystems, and its negative effects through trophic transfer among marine organisms, remains a growing concern. Our study investigates the trophic transfer and individual impacts of polystyrene microplastics (MPs) in an estuarine food chain model, comprising Artemia salina as primary organism, Litopenaeus vanamei as secondary organism, and Oreochromis niloticus as tertiary organism. A. salina were exposed to 1 µm polystyrene microplastics (106 particles/ml), further it was fed to L.vannamei, which, in turn, were fed to O.niloticus. MPs transfer was studied over 24 and 48 h. Fluorescence microscopy confirmed MPs presence in the gut and fecal matter of all the test organisms. Histopathology revealed MPs in the gut epithelium, but did not translocate to other tissues of the test species. MPs exposed A.salina had a bioconcentration factor of 0.0029 ± 0.0008 (24 h) and 0.0000941 ± 0.0000721 (48 h). Whereas, the bioaccumulation factor values for L. vanamei were 0.00012143 ± 0.000009 (24 h) and 0.0025899 ± 0.0024101 (48 h), and for O.niloticus were 0.154992 ± 0.007695 (24 h) and 0.00972577 ± 0.00589923 (48 h). Despite low MPs transfer among trophic levels, the induced stress was evident through biochemical responses in all the test species. This implies the potential risk of MPs ultimately reaching humans via the food chain.

Keywords: Bioaccumulation; Biochemical profile; Histopathology; Polystyrene Microplastics; Trophic transfer.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Ecosystem
  • Food Chain
  • Humans
  • Microplastics* / toxicity
  • Plastics / toxicity
  • Polystyrenes / toxicity
  • Water Pollutants, Chemical* / analysis
  • Water Pollutants, Chemical* / toxicity

Substances

  • Microplastics
  • Plastics
  • Polystyrenes
  • Water Pollutants, Chemical