Revealing the release and migration mechanism of heavy metals in typical carbonate tailings, East China

J Hazard Mater. 2024 Feb 15:464:132978. doi: 10.1016/j.jhazmat.2023.132978. Epub 2023 Nov 11.

Abstract

Refining the occurrence characteristics of tailings hazardous materials at source is of great importance for pollution management and ecological reclamation. However, the release and transport of heavy metals (HMs) from tailings under rainfall drenching in simulated real-world environments is less well portrayed, particularly highlighting the inherent neutralisation in tailings wastes under superimposed dynamic conditions. In this study, dynamic leaching columns simulating actual conditions were used to observe the release and transport of HMs from tailings under acid rainfall infiltration at spatial and temporal scales. The release rate of trace elements (e.g., As, Cr, Ni, Pb, Cd) is high. Neutralisation in the presence of carbonate rocks in the gangue reduces HMs release intensity from tailings with high heavy metal content, along with the precipitation of iron oxides and chromium-bearing minerals, etc. In addition, the vertical differentiation of HMs is more relevant to physical processes. In the absence of carbonate rocks in gangue, the lowest pH value is reached within 1.2 h after acid rain infiltrates the tailings. At the same time, Cu, Zn and Cd are released significantly from the minerals at the superficial level. The release of As(III) is mainly concentrated in the early and late stages of water-rock contact.

Keywords: Acid rain; Heavy metals; Hydrogeochemical modeling; Leaching intensity; Neutralization.