Grass-Fed and Non-Grass-Fed Whey Protein Consumption Do Not Attenuate Exercise-Induced Muscle Damage and Soreness in Resistance-Trained Individuals: A Randomized, Placebo-Controlled Trial

J Diet Suppl. 2024;21(3):344-373. doi: 10.1080/19390211.2023.2282470. Epub 2023 Nov 20.

Abstract

Eccentric muscle contractions can cause structural damage to muscle cells resulting in temporarily decreased muscle force production and soreness. Prior work indicates pasture-raised dairy products from grass-fed cows have greater anti-inflammatory and antioxidant properties compared to grain-fed counterparts. However, limited research has evaluated the utility of whey protein from pasture-raised, grass-fed cows to enhance recovery compared to whey protein from non-grass-fed cows. Therefore, using a randomized, placebo-controlled design, we compared the effect of whey protein from pasture-raised, grass-fed cows (PRWP) to conventional whey protein (CWP) supplementation on indirect markers of muscle damage in response to eccentric exercise-induced muscle damage (EIMD) in resistance-trained individuals. Thirty-nine subjects (PRWP, n = 14; CWP, n = 12) completed an eccentric squat protocol to induce EIMD with measurements performed at 24, 48, and 72 h of recovery. Dependent variables included: delayed onset muscle soreness (DOMS), urinary titin, maximal isometric voluntary contraction (MIVC), potentiated quadriceps twitch force, countermovement jump (CMJ), and barbell back squat velocity (BBSV). Between-condition comparisons did not reveal any significant differences (p ≤ 0.05) in markers of EIMD via DOMS, urinary titin, MIVC, potentiated quadriceps twitch force, CMJ, or BBSV. In conclusion, neither PRWP nor CWP attenuate indirect markers of muscle damage and soreness following eccentric exercise in resistance-trained individuals.

Keywords: delayed onset muscle soreness; eccentric exercise; muscle recovery; nutraceuticals; nutritional supplements; strength-trained individuals.

Publication types

  • Randomized Controlled Trial, Veterinary

MeSH terms

  • Animals
  • Cattle
  • Connectin / pharmacology
  • Humans
  • Muscle Contraction / physiology
  • Muscle, Skeletal*
  • Myalgia / prevention & control
  • Whey Proteins / pharmacology
  • Whey*

Substances

  • Connectin
  • Whey Proteins