An injectable, in situ forming and NIR-responsive hydrogel persistently reshaping tumor microenvironment for efficient melanoma therapy

Biomater Res. 2023 Nov 19;27(1):118. doi: 10.1186/s40824-023-00462-y.

Abstract

Background: Melanoma is a highly aggressive form of skin cancer with increasing incidence and mortality rates. Chemotherapy, the primary treatment for melanoma, is limited by hypoxia-induced drug resistance and suppressed immune response at the tumor site. Modulating the tumor microenvironment (TME) to alleviate hypoxia and enhance immune response has shown promise in improving chemotherapy outcomes.

Methods: In this study, a novel injectable and in situ forming hydrogel named MD@SA was developed using manganese dioxide (MnO2) nanosheets pre-loaded with the chemotherapy drug doxorubicin (DOX) and mixed with sodium alginate (SA). The sustainable drug delivery, oxygen generation ability, and photothermal property of MD@SA hydrogel were characterized. The therapeutic efficacy of hydrogel was studied in B16F10 in vitro and B16F10 tumor-bearing mice in vivo. The immune effects on macrophages were analyzed by flow cytometry, real-time quantitative reverse transcription PCR, and immunofluorescence analyses.

Results: The MD@SA hydrogel catalyzed the tumoral hydrogen peroxide (H2O2) into oxygen, reducing the hypoxic TME, down-regulating hypoxia-inducible factor-1 alpha (HIF-1α) and drug efflux pump P-glycoprotein (P-gp). The improved TME conditions enhanced the uptake of DOX by melanoma cells, enhancing its efficacy and facilitating the release of tumor antigens. Upon NIR irradiation, the photothermal effect of the hydrogel induced tumor apoptosis to expose more tumor antigens, thus re-educating the M2 type macrophage into the M1 phenotype. Consequently, the MD@SA hydrogel proposes an ability to constantly reverse the hypoxic and immune-inhibited TME, which eventually restrains cancer proliferation.

Conclusion: The injectable and in situ forming MD@SA hydrogel represents a promising strategy for reshaping the TME in melanoma treatment. By elevating oxygen levels and activating the immune response, this hydrogel offers a synergistic approach for TME regulation nanomedicine.

Keywords: In situ forming; Injectable hydrogel; MnO2 nanosheet; NIR-responsive; Tumor microenvironment.