Proteomic investigation reveals the role of bacterial laccase from Bacillus pumilus in oxidative stress defense

J Proteomics. 2024 Feb 10:292:105047. doi: 10.1016/j.jprot.2023.105047. Epub 2023 Nov 18.

Abstract

The wide distribution of laccases in nature makes them involved in different biological processes. However, little information is known about how laccase participates in the defense machinery of bacteria against oxidative stress. The present study aimed to elucidate the oxidative stress response mechanism of Bacillus pumilus ZB1 and the functional role of bacterial laccase in stress defense. The oxidative stress caused by methyl methanesulfonate (MMS) significantly induced laccase activity and its transcript level. The morphological analysis revealed that the defense of B. pumilus ZB1 against oxidative stress was activated. Based on the proteomic study, 114 differentially expressed proteins (DEPs) were up-regulated and 79 DEPs were down-regulated. In COG analysis, 66.40% DEPs were classified into the category "Metabolism". We confirmed that laccase was up-regulated in response to MMS stress and its functional annotation was related to "Secondary metabolites biosynthesis, transport and catabolism". Based on protein-protein interaction prediction, two up-regulated DEPs (YcnJ and GabP) showed interaction with laccase and contributed to the formation of laccase stability and adaptability. The overexpressed laccase might improve the antioxidative property of B. pumilus ZB1. These findings provide an insight and the guidelines for better exploitation of bioremediation using bacterial laccase. SIGNIFICANCE: Bacillus pumilus is a gram-positive bacterium that has the potential for many applications, such as bioremediation. The expression of bacterial laccase is significantly influenced by oxidative stress, while the underlying mechanism of laccase overexpression in bacteria has not been fully studied. Elucidation of the biological process may benefit the bioremediation using bacteria in the future. In this study, the differentially expressed proteins were analyzed using a TMT-labeling proteomic approach when B. pumilus was treated with methyl methanesulfonate (MMS). Reactive oxygen species induced by MMS activated the secondary metabolites biosynthesis, transport, and catabolism in B. pumilus, including laccase overexpression. Moreover, the simultaneously up-regulated YcnJ and GabP may benefit the synthesis and the stability of laccase, then improve the antioxidative property of B. pumilus against environmental stress. Our findings advance the understanding of the adaptive mechanism of B. pumilus to environmental conditions.

Keywords: Bacillus pumilus; Laccase; Oxidative stress; Proteomics; Stress defense.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacillus pumilus* / metabolism
  • Bacterial Proteins / metabolism
  • Laccase / metabolism
  • Methyl Methanesulfonate / metabolism
  • Oxidative Stress
  • Proteomics

Substances

  • Laccase
  • Methyl Methanesulfonate
  • Bacterial Proteins