Photosynthetic responses of large old Zelkova serrata (Thunb.) Makino trees to different growth environments

Sci Rep. 2023 Nov 18;13(1):20205. doi: 10.1038/s41598-023-47561-3.

Abstract

Large old trees, which provide ecosystem services and serve as a historical and cultural heritage, are exposed to various environmental threats, such as habitat fragmentation and climate change, necessitating diagnosis of tangible and intangible stresses and their effects on tree growth for effective management. This study investigated the photosynthetic characteristics of 25 large old Zelkova serrata (Thunb.) Makino trees in Chungcheong Province, Korea, and identified the physical environmental factors affecting their physiological responses. Maximum assimilation rate (Amax) was the highest in July (summer), transpiration rate (E) and stomatal conductance (gs) increased from May (spring) to September (fall), and water use efficiency (WUE) was the highest in May (spring) and decreased until September (fall). Amax decreased as tree height increased. Ambient CO2 and vapor pressure deficit (VPD) were negatively correlated with photosynthetic parameters throughout the growth season and in July (summer) and September (fall), respectively. Physical environmental factors exhibited complex effect on physiological activities, which increased with wide growth space and decreased with deep soil covering and high impervious ground surface ratio. Physiological responses differed with surface types within the growth space, with bare land showing higher mean Amax, E, and gs than areas with mulching material or concrete. This study quantitatively determined the physiological activities of large old Z. serrata and proposes appropriate management measures for ensuring their healthy growth in abiotic stress environment.

MeSH terms

  • Ecosystem*
  • Photosynthesis / physiology
  • Plant Leaves / physiology
  • Plant Transpiration / physiology
  • Trees* / physiology
  • Ulmaceae
  • Water

Substances

  • Water