High-Performance Complementary Circuits from Two-Dimensional MoTe2

Nano Lett. 2023 Dec 13;23(23):10939-10945. doi: 10.1021/acs.nanolett.3c03184. Epub 2023 Nov 17.

Abstract

Two-dimensional (2D) materials hold great promise for future complementary metal-oxide semiconductor (CMOS) technology. However, the lack of effective methods to tune the Schottky barrier poses a challenge in constructing high-performance complementary circuits from the same material. Here, we reveal that the polarity of pristine MoTe2 field-effect transistors (FETs) with minimized air exposure is n-type, irrespective of the metal contact type. The fabricated n-FETs with palladium contact can reach electron currents up to 275 μA/μm at VDS = 2 V. For p-FETs, we introduce a novel nitric oxide doping strategy, allowing a controlled transition of MoTe2 FETs from n-type to unipolar p-type. By doping only in the contact region, we demonstrate hole currents up to 170 μA/μm at VDS= -2 V with preserved Ion/Ioff ratios of 105. Finally, we present a complementary inverter circuit comprising the high-performance n- and p-type FETs based on MoTe2, promoting the application of 2D materials in future electronic systems.

Keywords: CMOS; MoTe2; Schottky barrier; high-performance; inverter; nitric oxide doping; two-dimensional materials.