In Situ Interfacial Polymerized Arginine-Doped Polydopamine Thin-Film Nanocomposite Membranes for High-Separation and Antifouling Reverse Osmosis

ACS Appl Mater Interfaces. 2023 Dec 6;15(48):56293-56304. doi: 10.1021/acsami.3c13195. Epub 2023 Nov 17.

Abstract

In this work, we synthesized polydopamine nanoparticles (PDNPs-M, M = I, II, III, and IV) with uniform particle sizes but varying l-arginine (Arg) contents (0%, 0.53%, 3.73%, and 6.62%) through a one-pot synthesis approach. Thin-film nanocomposite (TFN) membranes were fabricated via in situ interfacial polymerization (IP). The effects of the PDNPs-M chemical structure on the IP process and the consequent impacts on the structure and properties of the polyamide (PA) selective layer were investigated. The hydrophilicity and dispersibility of PDNPs-M exhibited an upward trend with the Arg content. Furthermore, Arg doping contributes to a denser and smoother PA layer. Among the TFC and TFN membranes, TFN-PDNPs-IV exhibited a water permeability of 3.89 L·m-2·h-1·bar-1 (55.1% higher than that of TFC-0) with a NaCl rejection rate of 98.8%, signifying superior water/salt selectivity. Additionally, TFN-PDNPs-IV exhibited regular pressure stability, commendable acid/alkali stability, and enhanced antifouling properties. These findings highlight the significant impact of nanoparticle hydrophilic functional groups on the structural and functional attributes of TFN membranes, offering a promising approach for developing advanced reverse osmosis membranes.

Keywords: Hydrophilic functional groups; Polydopamine; Reverse osmosis; Thin-film nanocomposite; Water/salt selectivity.