Investigating Spillover Energy as a Descriptor for Single-Atom Alloy Catalyst Design

J Phys Chem Lett. 2023 Nov 30;14(47):10561-10569. doi: 10.1021/acs.jpclett.3c02551. Epub 2023 Nov 17.

Abstract

The identification of thermodynamic descriptors of catalytic performance is essential for the rational design of heterogeneous catalysts. Here, we investigate how spillover energy, a descriptor quantifying whether intermediates are more stable at the dopant or host metal sites, can be used to design single-atom alloys (SAAs) for formic acid dehydrogenation. Using theoretical calculations, we identify NiCu as a SAA with favorable spillover energy and demonstrate that formate intermediates produced after the initial O-H activation are more stable at Ni sites where rate-determining C-H activation occurs. Surface science experiments demonstrated that NiCu(111) SAAs are more reactive than Cu(111) while they still follow the formate reaction pathway. However, reactor studies of silica-supported NiCu SAA nanoparticles showed only a modest improvement over Cu resulting from surface coverage effects. Overall, this study demonstrates the potential of engineering SAAs using spillover energy as a design parameter and highlights the importance of adsorbate-adsorbate interactions under steady-state operation.