The meaning of ubiquitylation of the DSL ligand Delta for the development of Drosophila

BMC Biol. 2023 Nov 16;21(1):260. doi: 10.1186/s12915-023-01759-z.

Abstract

Background: Ubiquitylation (ubi) of the intracellular domain of the Notch ligand Delta (Dl) by the E3 ligases Neuralized (Neur) and Mindbomb1 (Mib1) on lysines (Ks) is thought to be essential for the its signalling activity. Nevertheless, we have previously shown that DlK2R-HA, a Dl variant where all Ks in its intracellular domain (ICD) are replaced by the structurally similar arginine (R), still possess weak activity if over-expressed. This suggests that ubi is not absolutely required for Dl signalling. However, it is not known whether the residual activity of DlK2R-HA is an effect of over-expression and, if not, whether DlK2R can provide sufficient activity for the whole development of Drosophila.

Results: To clarify these issues, we generated and analysed DlattP-DlK2R-HA, a knock-in allele into the Dl locus. Our analysis of this allele reveals that the sole presence of one copy of DlattP-DlK2R-HA can provide sufficient activity for completion of development. It further indicates that while ubi is required for the full activity of Dl in Mib1-dependent processes, it is not essential for Neur-controlled neural development. We identify three modes of Dl signalling that are either dependent or independent of ubi. Importantly, all modes depend on the presence of the endocytic adapter Epsin. During activation of Dl, direct binding of Epsin appears not to be an essential requirement. In addition, our analysis further reveals that the Ks are required to tune down the cis-inhibitory interaction of Dl with Notch.

Conclusions: Our results indicate that Dl can activate the Notch pathway without ubi of its ICD. It signals via three modes. Ubi is specifically required for the Mib1-dependent processes and the adjustment of cis-inhibition. In contrast to Mib1, Neur can efficiently activate Dl without ubi. Neur probably acts as an endocytic co-adapter in addition to its role as E3 ligase. Endocytosis, regulated in a ubi-dependent or ubi-independent manner is required for signalling and also suppression of cis-inhibition. The findings clarify the role of ubi of the ligands during Notch signalling.

Keywords: Cell communication; DSL-ligands; Delta; E3-ligase; Endocytosis; Mindbomb1; Neuralized; Notch; Ubiquitylation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Drosophila Proteins* / metabolism
  • Drosophila melanogaster / genetics
  • Drosophila melanogaster / metabolism
  • Drosophila* / metabolism
  • Endocytosis
  • Ligands
  • Membrane Proteins / metabolism
  • Receptors, Notch / metabolism
  • Ubiquitin-Protein Ligases / genetics
  • Ubiquitin-Protein Ligases / metabolism
  • Ubiquitination

Substances

  • Drosophila Proteins
  • Ligands
  • Membrane Proteins
  • Receptors, Notch
  • Ubiquitin-Protein Ligases