[Effects of Biochar Application on Soil Organic Nitrogen Component and Active Nitrogen in Eucalyptus Plantations After Five Years in Northern Guangxi]

Huan Jing Ke Xue. 2023 Nov 8;44(11):6235-6247. doi: 10.13227/j.hjkx.202211155.
[Article in Chinese]

Abstract

The objective of this study was to research the characteristics of fractions of organic nitrogen and active nitrogen and their relationship under different biochar applications and to provide a basis for the preparation and practical application of biochar from Eucalyptus forest wastes. In a long-term positioning test of biochar application from 2017, six different treatments were selected:0(CK), 0.5%(T1), 1%(T2), 2%(T3), 4%(T4), and 6%(T5). The contents of soil organic nitrogen components, total nitrogen(TN), dissolved organic nitrogen(DON), and microbial biomass nitrogen(MBN) following the different treatments were measured. The results showed that:① compared with that of the control, with the increase in biochar application, the contents of soil TN, acidolysis of total organic nitrogen(AHON), ammonia nitrogen(AN), amino acid nitrogen(AAN), MBN, DON, and nitrogen storage(NS) increased significantly by 45.48%-156.32%, 44.31%-171.31%, 38.06%-223.37%, 39.42%-163.32%, 36.72%-109%, 23.27%-113.51%, and 29.45%-62.37%, respectively. The contents of soil hydrolyzable unknown nitrogen(HUN) and non-hydrolyzable nitrogen(NHN) also increased significantly by 88.41%-158.71% and 50.24%-139.01%, respectively. The contents of soil amino sugar nitrogen(ASN) decreased by 7.72%-32.73%. The contents of different forms of organic nitrogen fractions in all treatments displayed an order of AN > AAN > NHN > HUN > ASN. Compared with the no biochar treatment, each biochar treatment increased the contents and proportion of AHON in the TN. ② With the exception of HUN, the contents of other soil organic nitrogen components and active nitrogen content decreased with the increase in soil depth. ③ There were significantly positive correlations between TN, MBN, and DON and AHON, NHN, and NS contents. The principal component analysis showed that bulk density and ASN and TN and HUN, AAN, DON, and AHON were closely related, respectively. In conclusion, the application of forestry waste biochar for five years could significantly increase the content of soil organic nitrogen component and active nitrogen, thereby improving the capacity of the soil to supply nitrogen. AHON, AN, and AAN were the main factors contributing to soil active nitrogen content.

Keywords: Eucalyptus plantations; acid hydrolyzable nitrogen(AHN); active nitrogen; biochar; organic nitrogen component.

Publication types

  • English Abstract

MeSH terms

  • Carbon / analysis
  • Charcoal / chemistry
  • China
  • Eucalyptus*
  • Nitrogen / analysis
  • Soil* / chemistry

Substances

  • biochar
  • Soil
  • Carbon
  • Nitrogen
  • Charcoal