Hippocampus substructure segmentation using morphological vision transformer learning

Phys Med Biol. 2023 Dec 1;68(23):235013. doi: 10.1088/1361-6560/ad0d45.

Abstract

The hippocampus plays a crucial role in memory and cognition. Because of the associated toxicity from whole brain radiotherapy, more advanced treatment planning techniques prioritize hippocampal avoidance, which depends on an accurate segmentation of the small and complexly shaped hippocampus. To achieve accurate segmentation of the anterior and posterior regions of the hippocampus from T1 weighted (T1w) MR images, we developed a novel model, Hippo-Net, which uses a cascaded model strategy. The proposed model consists of two major parts: (1) a localization model is used to detect the volume-of-interest (VOI) of hippocampus. (2) An end-to-end morphological vision transformer network (Franchietal2020Pattern Recognit.102107246, Ranemetal2022 IEEE/CVF Conf. on Computer Vision and Pattern Recognition Workshops (CVPRW) pp 3710-3719) is used to perform substructures segmentation within the hippocampus VOI. The substructures include the anterior and posterior regions of the hippocampus, which are defined as the hippocampus proper and parts of the subiculum. The vision transformer incorporates the dominant features extracted from MR images, which are further improved by learning-based morphological operators. The integration of these morphological operators into the vision transformer increases the accuracy and ability to separate hippocampus structure into its two distinct substructures. A total of 260 T1w MRI datasets from medical segmentation decathlon dataset were used in this study. We conducted a five-fold cross-validation on the first 200 T1w MR images and then performed a hold-out test on the remaining 60 T1w MR images with the model trained on the first 200 images. In five-fold cross-validation, the Dice similarity coefficients were 0.900 ± 0.029 and 0.886 ± 0.031 for the hippocampus proper and parts of the subiculum, respectively. The mean surface distances (MSDs) were 0.426 ± 0.115 mm and 0.401 ± 0.100 mm for the hippocampus proper and parts of the subiculum, respectively. The proposed method showed great promise in automatically delineating hippocampus substructures on T1w MR images. It may facilitate the current clinical workflow and reduce the physicians' effort.

Keywords: deep learning; hippocampus substructure; segmentation.

MeSH terms

  • Artificial Intelligence
  • Hippocampus* / diagnostic imaging
  • Image Processing, Computer-Assisted / methods
  • Magnetic Resonance Imaging* / methods