Fibroblast Growth Factor 23 Neutralizing Antibody Ameliorates Abnormal Renal Phosphate Handling in Sickle Cell Disease Mice

Endocrinology. 2023 Nov 2;164(12):bqad173. doi: 10.1210/endocr/bqad173.

Abstract

We assessed the involvement of fibroblast growth factor 23 (FGF23) in phosphaturia in sickle cell disease (SCD) mice. Control and SCD mice were treated with FGF23 neutralizing antibody (FGF23Ab) for 24 hours. Serum ferritin was significantly increased in SCD mice and was significantly reduced in female but not male SCD mice by FGF23Ab. FGF23Ab significantly reduced increased erythropoietin in SCD kidneys. Serum intact FGF23 was significantly increased in SCD female mice and was markedly increased in SCD male mice; however, FGF23Ab significantly reduced serum intact FGF23 in both genotypes and sexes. Serum carboxy-terminal-fragment FGF23 (cFGF23) was significantly reduced in SCD IgG male mice and was markedly but not significantly reduced in SCD IgG female mice. FGF23Ab significantly increased cFGF23 in both sexes and genotypes. Serum 1,25-dihydroxyvitamin D3 was significantly increased in SCD IgG and was further significantly increased by FGF23Ab in both sexes and genotypes. Significantly increased blood urea nitrogen in SCD was not reduced by FGF23Ab. The urine phosphate (Pi)/creatinine ratio was significantly increased in SCD in both sexes and was significantly reduced by FGF23Ab. Increased SCD kidney damage marker kidney injury molecule 1 was rescued, but sclerotic glomeruli, increased macrophages, and lymphocytes were not rescued by short-term FGF23Ab. FGF23Ab significantly reduced increased phospho-fibroblast growth factor receptor 1, αKlotho, phosphorylated extracellular signal-regulated kinase, phosphorylated serum/glucocorticoid-regulated kinase 1, phosphorylated sodium-hydrogen exchanger regulatory factor-1, phosphorylated janus kinase 3, and phosphorylated transducer and activator of transcription-3 in SCD kidneys. The type II sodium Pi cotransporter (NPT2a) and sodium-dependent Pi transporter PiT-2 proteins were significantly reduced in SCD kidneys and were increased by FGF23Ab. We conclude that increased FGF23/FGF receptor 1/αKlotho signaling promotes Pi wasting in SCD by downregulating NPT2a and PIT2 via modulation of multiple signaling pathways that could be rescued by FGF23Ab.

Keywords: FGF23 neutralization; kidney; phosphaturia; sickle cell disease mice.

MeSH terms

  • Anemia, Sickle Cell* / drug therapy
  • Animals
  • Antibodies, Neutralizing
  • Female
  • Fibroblast Growth Factor-23
  • Immunoglobulin G
  • Kidney
  • Male
  • Mice
  • Phosphates*
  • Sodium

Substances

  • Phosphates
  • Fibroblast Growth Factor-23
  • Antibodies, Neutralizing
  • Sodium
  • Immunoglobulin G