Microfluidization improved hempseed yogurt's physicochemical and storage properties

J Sci Food Agric. 2024 Mar 15;104(4):2252-2261. doi: 10.1002/jsfa.13137. Epub 2023 Dec 15.

Abstract

Background: Plant-based yogurts are suffering from the common problems, such as an unattractive color, stratified texture state and rough taste. Therefore, it is urgent to develop a novel processing method to improve the quality and extend the storage life of hempseed yogurt. In the present study, hempseed yogurt was microfluidized prior to fermentation. The effects of microfluidization on microstructure, particle size, mechanical properties, sensory acceptability, variations in pH and titratable acidity, lactic acid bacteria (LAB) counts, and stability of hempseed yogurt during 20 days of storage were investigated.

Results: Microfluidization contributed to the production of hempseed yogurt as a result of the better physicochemical properties compared to normal homogenization. Specifically, microfluidization reduced the particle size of hempseed yogurt with a uniform particle distribution, increased water holding capacity, and improved texture and rheological properties. These advancements resulted in higher sensory scores for the yogurt. Furthermore, during storage, microfluidization effectively inhibited the post-acidification process of hempseed yogurt, and increased LAB counts and storage stability.

Conclusion: Microfluidization improved the physicochemical properties and storage stability of hempseed yogurt. Our findings support the application of microfluidization in hempseed yogurt and provide a new approach for enhancing the quality of plant-based alternatives that meet consumers' demands for high-quality food products. © 2023 Society of Chemical Industry.

Keywords: hempseed yogurt; microfluidization; physicochemical properties; storage stability.

MeSH terms

  • Chemical Phenomena
  • Particle Size
  • Taste*
  • Yogurt* / microbiology