MXene Hybrid Nanosheet of WS2/Ti3C2 for Electrocatalytic Hydrogen Evolution Reaction

ACS Omega. 2023 Oct 23;8(44):41802-41808. doi: 10.1021/acsomega.3c06403. eCollection 2023 Nov 7.

Abstract

Designing low-cost hybrid electrocatalysts for hydrogen production is of significant importance. Recently, MXene-based materials are being increasingly employed in energy storage devices owing to their layered structure and high electrical conductivity. In this study, we propose a facile hydrothermal strategy for producing WS2/Ti3C2 nanosheets that function as electrocatalysts in the hydrogen evolution reaction (HER). WS2 provides a high surface area and active sites for electrocatalytic activity, whereas MXene Ti3C2 facilitates charge transfer. As a result, the synthesized WS2/Ti3C2 offers an increased surface area and exhibits an enhanced electrocatalytic activity in acidic media. The WS2/Ti3C2 (10%) catalyst exhibited a low onset potential of -150 mV versus RHE for the HER and a low Tafel slope of ∼62 mV dec-1. Moreover, WS2/Ti3C2 (10%) exhibited a double-layer capacitance of 1.2 mF/cm-2, which is 3 and 6 times greater than those of bare WS2 and Ti3C2, respectively. This catalyst also maintained a steady catalytic activity for the HER for over 1000 cycles.