A New Behavioral Paradigm for Visual Classical Conditioning in Drosophila

Bio Protoc. 2023 Nov 5;13(21):e4875. doi: 10.21769/BioProtoc.4875.

Abstract

Visual learning in animals is a remarkable cognitive ability that plays a crucial role in their survival and adaptation. Therefore, the ability to learn is highly conserved among animals. Despite lacking a centralized nervous system like vertebrates, invertebrates have demonstrated remarkable learning abilities. Here, we describe a simple behavioral assay that allows the analysis of visual associative learning in individually traceable freely walking adult fruit flies. The setup is based on the simple and widely used behavioral assay to study orientation behavior in flies. A single wing-clipped fly that has been starved for 21 h is placed on a platform where two unreachable opposite visual sets are displayed. This visual learning protocol was initially developed to study the cognitive ability of fruit flies to process numerical information. Through the application of the protocol, flies are able to associate a specific visual set with an appetitive reward. This association is revealed 2 h later during the testing session where we observed a change in their preference upon learning (i.e., change in their spontaneous preference). Moreover, this protocol could potentially be used to associate any other visual object/property to the reward, expanding the opportunities of studying visual learning in freely walking fruit flies at individual level.

Keywords: Appetitive learning; Cognitive ability; Drosophila melanogaster; Short-term memory; Visual conditioning.