Cooperative dihydrogen activation with unsupported uranium-metal bonds and characterization of a terminal U(iv) hydride

Chem Sci. 2023 Oct 16;14(43):12255-12263. doi: 10.1039/d3sc04857h. eCollection 2023 Nov 8.

Abstract

Cooperative chemistry between two or more metal centres can show enhanced reactivity compared to the monometallic fragments. Given the paucity of actinide-metal bonds, especially those with group 13, we targeted uranium(iii)-aluminum(i) and -gallium(i) complexes as we envisioned the low-valent oxidation state of both metals would lead to novel, cooperative reactivity. Herein, we report the molecular structure of [(C5Me5)2(MesO)U-E(C5Me5)], E = Al, Ga, Mes = 2,4,6-Me3C6H2, and their reactivity with dihydrogen. The reaction of H2 with the U(iii)-Al(i) complex affords a trihydroaluminate complex, [(C5Me5)2(MesO)U(μ2-(H)3)-Al(C5Me5)] through a formal three-electron metal-based reduction, with concomitant formation of a terminal U(iv) hydride, [(C5Me5)2(MesO)U(H)]. Noteworthy is that neither U(iii) complexes nor [(C5Me5)Al]4 are capable of reducing dihydrogen on their own. To make the terminal hydride in higher yields, the reaction of [(C5Me5)2(MesO)U(THF)] with half an equivalent of diethylzinc generates [(C5Me5)2(MesO)U(CH2CH3)] or treatment of [(C5Me5)2U(i)(Me)] with KOMes forms [(C5Me5)2(MesO)U(CH3)], which followed by hydrogenation with either complex cleanly affords [(C5Me5)2(MesO)U(H)]. All complexes have been characterized by spectroscopic and structural methods and are rare examples of cooperative chemistry in f element chemistry, dihydrogen activation, and stable, terminal ethyl and hydride compounds with an f element.