Photothermal, Magnetic, and Superhydrophobic PU Sponge Decorated with a Fe3O4/MXene/Lignin Composite for Efficient Oil/Water Separation

Langmuir. 2023 Nov 28;39(47):16935-16953. doi: 10.1021/acs.langmuir.3c02810. Epub 2023 Nov 16.

Abstract

Frequent oil spills and the discharge of industrial oily wastewaters have become a serious threat to the environment, ecosystem, and human beings. Herein, a photothermal, magnetic, and superhydrophobic PU sponge decorated with a Fe3O4/MXene/lignin composite (labeled as S-Fe3O4/MXene/lignin@PU sponge) has been designed and prepared. The obtained superhydrophobic/superoleophilic PU sponge possesses excellent chemical stability, thermal stability, and mechanical durability in terms of being immersed in corrosive solutions and organic solvents and boiling water and being abrased by sandpapers, respectively. The oil adsorption capacities of the S-Fe3O4/MXene/lignin@PU sponge for various organic liquids range from 29.1 to 70.3 g/g, and the oil adsorption capacity for CCl4 can remain 69.6 g/g even after 15 cyclic adsorption tests. The separation efficiencies of the S-Fe3O4/MXene/lignin@PU sponge for n-hexane and CCl4 are higher than 98% in different environments (i.e., water, hot water, 1 mol/L NaOH, 1 mol/L NaCl, and 1 mol/L HCl). More importantly, the introduction of three light absorbers (i.e., Fe3O4, MXene, and lignin) into the S-Fe3O4/MXene/lignin@PU sponge shows a synergistic effect in the photothermal heat conversion performance, and the maximum surface temperature reaches 64.4 °C under sunlight irradiation (1.0 kW/m2). The separation flux of the S-Fe3O4/MXene/lignin@PU sponge for viscous LT147 vacuum pump oil reaches 35,469 L m-2 h-1 under sunlight irradiation, showing an increase of 27.3% compared to that of oil adsorption processes without the photothermal effect. Thus, the rational design of superhydrophobic sponges by introducing proper photothermal heat absorbers provides new insights into facile and cost-effective preparation of sponges for efficient oil/water separation.