Pressure-Regulated Nanoconfined Channels for Highly Effective Mechanical-Electrical Conversion in Proton Battery-Type Self-Powered Pressure Sensor

Adv Mater. 2023 Dec;35(52):e2308795. doi: 10.1002/adma.202308795. Epub 2023 Nov 22.

Abstract

Battery-sensing-based all-in-one pressure sensors are generally successfully constructed by mimicking the information transfer of living organisms and the sensing behavior of human skin, possessing features such as low energy consumption and detection of low/high-frequency mechanical signals. To design high-performance all-in-one pressure sensors, a deeper understanding of the intrinsic mechanisms of such sensors is required. Here, a mechanical-electrical conversion mechanism based on pressure-modulated nanoconfined channels is proposed. Then, the mechanism of ion accelerated transport in graphene oxide (GO) nanoconfined channels under pressure is revealed by density functional theory (DFT) calculation. Based on this mechanism, a proton battery-type self-powered pressure sensor MoO3 /GO[CNF/Ca] /activated carbon (AC) is designed with an open-circuit voltage stabilization of 0.648 V, an ultrafast response/recovery time of 86.0 ms/93.0 ms, pressure detection ranges of up to 60.0 kPa, and excellent static/dynamic pressure response. In addition, the one-piece device design enables self-supply, miniaturization, and charge/discharge reuse, showing application potential in wearable electronics, health monitoring, and other fields.

Keywords: mechanical-electrical conversion; nanoconfined channels; self-powered pressure sensor; solid electrolyte film.