Climate-resilient crops: Lessons from xerophytes

Plant J. 2024 Mar;117(6):1815-1835. doi: 10.1111/tpj.16549. Epub 2023 Nov 15.

Abstract

Developing climate-resilient crops is critical for future food security and sustainable agriculture under current climate scenarios. Of specific importance are drought and soil salinity. Tolerance traits to these stresses are highly complex, and the progress in improving crop tolerance is too slow to cope with the growing demand in food production unless a major paradigm shift in crop breeding occurs. In this work, we combined bioinformatics and physiological approaches to compare some of the key traits that may differentiate between xerophytes (naturally drought-tolerant plants) and mesophytes (to which the majority of the crops belong). We show that both xerophytes and salt-tolerant mesophytes have a much larger number of copies in key gene families conferring some of the key traits related to plant osmotic adjustment, abscisic acid (ABA) sensing and signalling, and stomata development. We show that drought and salt-tolerant species have (i) higher reliance on Na for osmotic adjustment via more diversified and efficient operation of Na+ /H+ tonoplast exchangers (NHXs) and vacuolar H+ - pyrophosphatase (VPPases); (ii) fewer and faster stomata; (iii) intrinsically lower ABA content; (iv) altered structure of pyrabactin resistance/pyrabactin resistance-like (PYR/PYL) ABA receptors; and (v) higher number of gene copies for protein phosphatase 2C (PP2C) and sucrose non-fermenting 1 (SNF1)-related protein kinase 2/open stomata 1 (SnRK2/OST1) ABA signalling components. We also show that the past trends in crop breeding for Na+ exclusion to improve salinity stress tolerance are counterproductive and compromise their drought tolerance. Incorporating these genetic insights into breeding practices could pave the way for more drought-tolerant and salt-resistant crops, securing agricultural yields in an era of climate unpredictability.

Keywords: Na+/H+ tonoplast exchangers; abscisic acid; climate-resilient crops; drought stress; evolutionary analysis; salinity; stomata; xerophytes.

Publication types

  • Review

MeSH terms

  • Abscisic Acid / metabolism
  • Crops, Agricultural* / genetics
  • Crops, Agricultural* / metabolism
  • Droughts
  • Naphthalenes
  • Plant Breeding*
  • Sulfonamides

Substances

  • pyrabactin
  • Sulfonamides
  • Naphthalenes
  • Abscisic Acid