Characterization of organic crystals for second-harmonic generation

Opt Lett. 2023 Nov 15;48(22):5855-5858. doi: 10.1364/OL.506508.

Abstract

Second-harmonic generation (SHG) is a common technique with many applications. Common inorganic single-crystalline materials used to produce SHG light are effective using short IR/visible wavelengths but generally do not perform well at longer, technologically relevant IR wavelengths such as 1300, 1550, and 2000 nm. Efficient SHG materials possess many of the same key material properties as terahertz (THz) generators, and certain single-crystalline organic THz generation materials have been reported to perform at longer IR wavelengths. Consequently, this work focuses on characterizing three efficient organic THz generators for SHG, namely, DAST (trans-4-[4-(dimethylamino)-N-methylstilbazolium] p-tosylate), DSTMS (4-N,N-dimethylamino-4'-N'-methylstilbazolium 2,4,6-trimethylbenzenesulfonate), and the recently discovered generator PNPA ((E)-4-((4-nitrobenzylidene)amino)-N-phenylaniline). All three of these crystals outperform the beta-barium borate (BBO), an inorganic material commonly used for SHG, using IR pump wavelengths (1200-2000 nm).