3D printing of non-iridescent structural color inks for optical anti-counterfeiting

Nanoscale. 2023 Nov 30;15(46):18825-18831. doi: 10.1039/d3nr05036j.

Abstract

In this work, structural color inks with practical significance in anti-counterfeiting applications have been successfully manufactured by facilely mixing SiO2@PDA@PHEMA hybrid colloidal particles with the mediated molecules of HEMA. The appropriate rheological properties of these photonic inks provide high viscosity and self-supporting performance, ensuring sufficient interaction between particles to form short-range ordered arrays during the mixing and shearing process and thus generating non-iridescent colors. The strong and broad uniform light absorption capabilities of polydopamine (PDA) not only suppress the incoherent multiple scattering of the photonic inks, but also impart surprising optical anti-counterfeiting properties, i.e. black color under ambient illumination and dazzling reflective coloration under strong illumination. With the 3D printing technique, complicated angle-independent patterns with visualization and high fidelity are expected to be fabricated with the as-prepared photonic inks for real-life applications in smart anti-counterfeiting labels, thus encoding encrypted information and selective color rendering accessories.