[Biomechanics of thoracic wall instability]

Unfallchirurgie (Heidelb). 2024 Mar;127(3):180-187. doi: 10.1007/s00113-023-01389-8. Epub 2023 Nov 14.
[Article in German]

Abstract

Traumatic injuries of the thorax can entail thoracic wall instability (flail chest), which can affect both the shape of the thorax and the mechanics of respiration; however, so far little is known about the biomechanics of the unstable thoracic wall and the optimal surgical fixation. This review article summarizes the current state of research regarding experimental models and previous findings. The thoracic wall is primarily burdened by complex muscle and compression forces during respiration and the mechanical coupling to spinal movement. Previous experimental models focused on the burden caused by respiration, but are mostly not validated, barely established, and severely limited with respect to the simulation of physiologically occurring forces. Nevertheless, previous results suggested that osteosynthesis of an unstable thoracic wall is essential from a biomechanical point of view to restore the native respiratory mechanics, thoracic shape and spinal stability. Moreover, in vitro studies also showed better stabilizing properties of plate osteosynthesis compared to intramedullary splints, wires or screws. The optimum number and selection of ribs to be fixated for the different types of thoracic wall instability is still unknown from a biomechanical perspective. Future biomechanical investigations should simulate respiratory and spinal movement by means of validated models.

Traumatische Thoraxverletzungen können eine Instabilität der Thoraxwand nach sich ziehen, die sowohl die Thoraxkontur als auch die Atemmechanik beeinträchtigen kann. Über die Biomechanik und die optimale chirurgische Fixierung der instabilen Thoraxwand ist bisher jedoch wenig bekannt. Dieser Übersichtsartikel fasst den Stand der Forschung hinsichtlich experimenteller Modelle und bisheriger Erkenntnisse zusammen. Die Thoraxwand wird v. a. durch komplexe Muskel- und Druckkräfte während der Atmung sowie ihre mechanische Kopplung an die Wirbelsäulenbewegung belastet. Bisherige experimentelle Modelle fokussieren sich auf die Belastungen während des Atemvorgangs, sind jedoch zumeist nicht validiert, kaum etabliert und hinsichtlich der Simulation physiologisch auftretender Kräfte stark limitiert. Dennoch deuten bisherige Ergebnisse darauf hin, dass eine Osteosynthese der instabilen Thoraxwand aus biomechanischer Sicht unerlässlich ist, um die native Atemmechanik, Brustkorbkontur und Wirbelsäulenstabilität wiederherzustellen. In-vitro-Studien konnten zudem zeigen, dass eine winkelstabile Plattenosteosynthese bessere stabilisierende Eigenschaften besitzt als intramedulläre Splints, Drähte oder Schrauben. Die optimale Anzahl und die Auswahl der zu fixierenden Rippen für die unterschiedlichen Arten der Thoraxwandinstabilität ist aus biomechanischer Sicht weiterhin unbekannt. Künftige biomechanische Untersuchungen sollten sowohl die Atem- als auch die Wirbelsäulenbewegung mithilfe validierter Modelle simulieren.

Keywords: Breathing mechanics; Flail chest; Movement; Serial rib fracture; Sternal fracture.

Publication types

  • English Abstract
  • Review

MeSH terms

  • Biomechanical Phenomena
  • Flail Chest* / etiology
  • Humans
  • Rib Fractures* / complications
  • Thoracic Injuries* / complications
  • Thoracic Wall* / surgery