Changes in the gene expression and methylation in chicken cecal tonsils after in ovo administration of bioactive substances

Sci Rep. 2023 Nov 13;13(1):19840. doi: 10.1038/s41598-023-47080-1.

Abstract

Cecal tonsils are the main organs which generate an immune response and also the part of the GALT, thus they are in the close proximity of the intestinal microbiota and continuously exposed to microbe-associated molecular patterns. GALT developed regulatory and anti-inflammatory mechanisms which eliminate or tolerate microbiota. Bioactive substances in ovo administration ensures an early contact between the GALT and beneficial bacteria, which greatly promotes the development of tolerance. Our previous studies have shown that the administration of bioactive substances in ovo silences gene expression in the cecal tonsils. The research hypothesis assumes that negative silencing of expression is correlated with the level of methylation in the tonsils. Therefore the current study aimed to analyze the global and gene-specific DNA methylation profiles in the cecal tonsils of two distinct chicken genotypes administered in ovo with bioactive substances. Eggs of Ross 308 and Green-legged Partridgelike were stimulated on day 12 of incubation. The injected compounds were: probiotic-Lactococcus lactis subsp. cremoris, prebiotic-galactooligosaccharides, and synbiotic-combination of both. Chickens were sacrificed on d 42 post-hatching. Cecal tonsils was collected, RNA and DNA were isolated and intended to gene expression, gene methylation and global methylation analysis. Cecal tonsils changes were observed in the methylation of 6 genes: SYK, ANGPTL4, TNFRSF14, IKZF1, CYR61, SERPING. Analyzes showed that the suppression of gene expression is related to the level of methylation of individual genes. Based on the results obtained in the cecal tonsils, it can be concluded that the silencing of gene expression is of an epigenetic nature. This is another study aimed at analyzing the relationship between the host, its intestinal microbiota and the possibilities of its programming.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Chickens* / metabolism
  • Gene Expression
  • Methylation
  • Palatine Tonsil / metabolism
  • Synbiotics*