Preparation, characterization, and Staphylococcus aureus biofilm elimination effect of baicalein-loaded tyrosine/hyaluronic acid/β-cyclodextrin-grafted chitosan nano-delivery system

Int J Biol Macromol. 2024 Jan;254(Pt 3):128066. doi: 10.1016/j.ijbiomac.2023.128066. Epub 2023 Nov 12.

Abstract

Staphylococcus aureus (S. aureus) is an important cause of infections associated with implanted medical devices due to the formation of bacterial biofilm, which can prevent the penetration of drugs, thus posing a serious multi-drug resistance. Methicillin-resistant Staphylococcus aureus (MRSA) is one of them. In order to enhance the biofilm elimination effect of Baicalein (BA), a BA-loaded Tyr/HA/CD-CS nano-delivery system was successfully prepared using β-cyclodextrin grafted with chitosan (CD-CS), Hyaluronic Acid (HA), and D-Tyrosine (D-Tyr). The Tyr/HA/CD-CS-BA-NPs have a uniform particle size distribution with a particle size of 238.1 ± 3.06 nm and a PDI of 0.130 ± 0.02. The NPs showed an obvious inhibitory effect on planktonic bacteria with a MIC of 12.5 μg/mL. In vivo and in vitro tests showed that the NPs could enhance the elimination effect of BA on the MRSA biofilm. The results of Confocal Laser Scanning Microscopy (CLSM), Live & Dead Kit, and colony count experiments illustrated that Tyr/HA/CD-CS-BA-NPs could enhance the permeability of drugs to the biofilm and improve the ability to kill the biofilm bacteria, which may be an important mechanism to enhance the elimination of the MRSA biofilm. These findings will help develop new, effective medicaments for treating bacterial biofilm infections.

Keywords: Bacterial biofilm; D-tyrosine; Nanoparticles.

MeSH terms

  • Anti-Bacterial Agents / pharmacology
  • Biofilms
  • Chitosan* / pharmacology
  • Humans
  • Hyaluronic Acid / pharmacology
  • Methicillin-Resistant Staphylococcus aureus*
  • Microbial Sensitivity Tests
  • Staphylococcal Infections* / drug therapy
  • Staphylococcal Infections* / microbiology
  • Staphylococcus aureus

Substances

  • Anti-Bacterial Agents
  • Chitosan
  • baicalein
  • Hyaluronic Acid