Effect of the oxygen vacancy electronic state on Ni migration in Li0.5(Ni0.8Mn0.1Co0.1)O2 cathode material

Phys Chem Chem Phys. 2023 Nov 22;25(45):31374-31381. doi: 10.1039/d3cp03396a.

Abstract

Cation migration coupled with oxygen vacancy formation is known to drive the layered to disordered spinel/rock-salt phase transformation in the high-Ni layered oxide cathodes of Li-ion batteries. However, the effect of different electronic states of oxygen vacancies on the cation migration still remains elusive. Here, we investigate Ni migration in delithiated Ni-rich Li0.5Ni0.8Mn0.1Co0.1O2 (hence Li0.5NMC811) in the presence of neutral and charged oxygen vacancies by means of first-principles density functional theory (DFT) calculations coupled with the nudged elastic band (NEB) method. We find that oxygen vacancies with neutral or +2 charge favor the Ni migration to Li tetrahedral and/or octahedral sites, both thermodynamically and kinetically. As for the case of +1 charged oxygen vacancies, while they thermodynamicaly favor the Ni migration to the Li site, the relatively high migration barrier suggests that they kinetically prohibit the Ni migration. Our results suggest that controlling the formation of oxygen vacancies is the key to enhancing the Ni-rich NMC structural stability in particular in their charged states.