PDZD8 promotes autophagy at ER-Lysosome contact sites to regulate synaptogenesis

bioRxiv [Preprint]. 2023 Dec 3:2023.10.30.564828. doi: 10.1101/2023.10.30.564828.

Abstract

Building synaptic connections, which are often far from the soma, requires coordinating a host of cellular activities from transcription to protein turnover, placing a high demand on intracellular communication. Membrane contact sites (MCSs) formed between cellular organelles have emerged as key signaling hubs for coordinating an array of cellular activities. We have found that the endoplasmic reticulum (ER) MCS tethering protein PDZD8 is required for activity-dependent synaptogenesis. PDZD8 is sufficient to drive ectopic synaptic bouton formation through an autophagy-dependent mechanism and required for basal synapse formation when autophagy biogenesis is limited. PDZD8 functions at ER-late endosome/lysosome (LEL) MCSs to promote lysosome maturation and accelerate autophagic flux. Mutational analysis of PDZD8's SMP domain further suggests a role for lipid transfer at ER-LEL MCSs. We propose that PDZD8-dependent lipid transfer from ER to LELs promotes lysosome maturation to increase autophagic flux during periods of high demand, including activity-dependent synapse formation.

Keywords: PDZD8; autophagy; lysosomes; membrane contact sites; synaptogenesis.

Publication types

  • Preprint