Newborn DNA methylation age differentiates long-term weight trajectory: The Boston Birth Cohort

medRxiv [Preprint]. 2023 Nov 3:2023.11.02.23297965. doi: 10.1101/2023.11.02.23297965.

Abstract

Background: Gestational age (GEAA) estimated by newborn DNA methylation (GAmAge) is associated with maternal prenatal exposures and immediate birth outcomes. However, the association of GAmAge with long-term overweight or obesity (OWO) trajectories is yet to be determined.

Methods: GAmAge was calculated for 831 children from a US predominantly urban, low-income, multi-ethnic birth cohort using Illumina EPIC array and cord-blood DNA samples. Repeated anthropometric measurements aligned with pediatric primary care schedule allowed us to calculate body-mass-index percentiles (BMIPCT) at specific age and to define long-term weight trajectories from birth to 18 years.

Results: Four BMIPCT trajectory groups described the long-term weight trajectories: stable (consistent OWO: "early OWO"; constant normal weight: "NW") or non-stable (OWO by year 1 of follow-up: "late OWO"; OWO by year 6 of follow-up: "NW to very late OWO") BMIPCT. were used GAmAge was a predictor of long-term obesity, differentiating between group with consistently high BMIPCT and group with normal BMIPCT patterns and groups with late OWO development. Such differentiation can be observed in the age periods of birth to 1year, 3years, 6years, 10years, and 14years (p<0.05 for all; multivariate models adjusted for GEAA, maternal smoking, delivery method, and child's sex). Birth weight was a mediator for the GAmAge effect on OWO status for specific groups at multiple age periods.

Conclusions: GAmAge is associated with BMI trajectories from birth to age 18 years, independent of GEAA and birth weight. If further confirmed, GAmAge may serve as an early biomarker for future OWO risk.

Publication types

  • Preprint