Measurement of Cutting Temperature in Interrupted Machining Using Optical Spectrometry

Sensors (Basel). 2023 Nov 4;23(21):8968. doi: 10.3390/s23218968.

Abstract

This research presents an experimental study focused on measuring temperature at the tool flank during the up-milling process at high cutting speed. The proposed system deals with emissivity compensation through a two-photodetector system and during calibration. A ratio pyrometer composed of two photodetectors and a multimode fiber-optic coupler is employed to capture the radiation emitted by the cutting insert. The pyrometer is calibrated using an innovative calibration system that addresses theoretical discrepancies arising from various factors affecting the measurement of cutting temperature. This calibration system replicates the milling process to generate a calibration curve. Experimentally, AISI 4140 steel is machined with coated tungsten carbide inserts, using cutting speeds of 300 and 400 m/min, and feed rates of 0.08 and 0.16 mm/tooth. The results reveal a maximum recorded cutting temperature of 518 °C and a minimum of 304 °C. The cutting temperature tends to increase with higher cutting speeds and feed rates, with cutting speed being the more influential factor in this increase. Both the pyrometer calibration and experimental outcomes yield satisfactory results. Finally, the results showed that the process and the device prove to be a convenient, effective, and precise method of measuring cutting temperature in machine processes.

Keywords: calibration system; cutting temperature; milling; ratio pyrometer.