MicroRNA-34a Mediates High-Fat-Induced Hepatic Insulin Resistance by Targeting ENO3

Nutrients. 2023 Oct 31;15(21):4616. doi: 10.3390/nu15214616.

Abstract

The etiology of numerous metabolic disorders is characterized by hepatic insulin resistance (IR). Uncertainty surrounds miR-34a's contribution to high-fat-induced hepatic IR and its probable mechanism. The role and mechanism of miR-34a and its target gene ENO3 in high-fat-induced hepatic IR were explored by overexpressing/suppressing miR-34a and ENO3 levels in in vivo and in vitro experiments. Moreover, as a human hepatic IR model, the miR-34a/ENO3 pathway was validated in patients with non-alcoholic fatty liver disease (NAFLD). The overexpression of hepatic miR-34a lowered insulin signaling and altered glucose metabolism in hepatocytes. In contrast, reducing miR-34a expression significantly reversed hepatic IR indices induced by palmitic acid (PA)/HFD. ENO3 was identified as a direct target gene of miR-34a. Overexpression of ENO3 effectively inhibited high-fat-induced hepatic IR-related indices both in vitro and in vivo. Moreover, the expression patterns of members of the miR-34a/ENO3 pathway in the liver tissues of NAFLD patients was in line with the findings of both cellular and animal studies. A high-fat-induced increase in hepatic miR-34a levels attenuates insulin signaling and impairs glucose metabolism by suppressing the expression of its target gene ENO3, ultimately leading to hepatic IR. The miR-34a/ENO3 pathway may be a potential therapeutic target for hepatic IR and related metabolic diseases.

Keywords: ENO3; hepatic insulin resistance; high fat; miR-34a.

MeSH terms

  • Animals
  • Glucose / metabolism
  • Humans
  • Insulin / metabolism
  • Insulin Resistance*
  • Liver / metabolism
  • Mice
  • Mice, Inbred C57BL
  • MicroRNAs* / genetics
  • MicroRNAs* / metabolism
  • Non-alcoholic Fatty Liver Disease* / drug therapy
  • Non-alcoholic Fatty Liver Disease* / genetics

Substances

  • MicroRNAs
  • Insulin
  • Glucose