Cross-Regional Pollination Behavior of Trichoplusia ni between China and the Indo-China Peninsula

Plants (Basel). 2023 Nov 6;12(21):3778. doi: 10.3390/plants12213778.

Abstract

Noctuid moths, a group of "non-bee" pollinators, are essential but frequently underappreciated. To elucidate their roles in cross-regional pollination, this study selected the agriculturally significant species, cabbage looper (CL) Trichoplusia ni, as a representative model. From 2017 to 2021, this study was conducted on Yongxing Island, situated at the center of the South China Sea. We investigated the flower-visiting activities of CL, including its occurrence, potential host species, and geographic distribution in the surrounding areas of the South China Sea. First, the potential transoceanic migratory behavior and regional distribution of CL were systematically monitored through a comprehensive integration of the data obtained from a searchlight trap. The transoceanic migratory behavior of CL was characterized by intermittent occurrence, with the major migratory periods and the peak outbreak yearly. Furthermore, trajectory analysis confirmed the ability of CL to engage in periodic, round-trip, migratory flights between Southeast Asian countries and China. More importantly, an observation of pollen on the body surface demonstrated that 95.59% (130/136) of the migrating individuals carried pollen. The proboscis and compound eyes were identified as the primary pollen-carrying parts, with no observable gender-based differences in pollen-carrying rates. Further, identifying the pollen carried by CL using morphological and molecular methods revealed a diverse range of pollen types from at least 17 plant families and 31 species. Notably, CL predominantly visited eudicot and herbaceous plants. In conclusion, this pioneering study has not only revealed the long-distance migration activities of these noctuid moths in the East Asian region but also provided direct evidence supporting their role as potential pollinators. These findings offer a critical theoretical basis to guide the development of scientific management strategies.

Keywords: Trichoplusia ni; palynology; pollination behavior; transoceanic migration.