Microstructure and Properties of Magnesium Alloy Joints Bonded by Using Gallium with the Assistance of Ultrasound at Room Temperature

Materials (Basel). 2023 Oct 31;16(21):6994. doi: 10.3390/ma16216994.

Abstract

Although magnesium alloys show potential as structural and functional materials, they are difficult to join using traditional welding methods because of their low melting points and active chemical properties. Their poor weldability impedes their universal application. Ultrasound-assisted transient liquid-phase bonding (U-TLP) is a novel method used for magnesium alloy bonding, but in almost all related studies, a heating device has been required, and the types of solders are limited. In this study, gallium was used as solder to bond AZ31 magnesium alloy with ultrasonic assistance at room temperature (without a heating device) due to the low melting temperature of gallium and its compatibility with other metals when forming intermetallic compounds (IMCs). The variations in the products, microstructure, fracture characteristics, and shear strength of the joints were investigated. A reliable joint composed of IMCs (Mg2Ga5, H-MgGa2, and Mg2Ga) and a eutectic structure was obtained after an ultrasonic duration of 3 s. Significantly, the plasticity of the joint was improved due to ultrasonic effects, which included the accelerated element diffusion process, the refinement of grains to nanometer particles, and the homogenization of organization. Thus, the highest shear strength of 14.65 MPa at 4 s was obtained, with obvious cleavage fracture characteristics in the region of the IMCs.

Keywords: gallium; intermetallic compounds; magnesium alloy; room-temperature bonding; ultrasound.