Preparation of NaYF4:Tm, Yb, and Gd Luminescent Nanorods/SiO2 Nanospheres Composite Thin Film and Its Application in Perovskite Solar Cells

Materials (Basel). 2023 Oct 27;16(21):6917. doi: 10.3390/ma16216917.

Abstract

In this study, we aim to minimize light loss and achieve high power conversion efficiencies (PCE) in perovskite solar cells (PSCs) by employing a spectral conversion film component with antireflection properties. In our scheme, NaYF4:Tm, Yb, and Gd luminescent nanorod/silica nanosphere-based thin films are applied on CH3NH3PbI3 PSCs to improve the device efficiency. The film was fabricated by spin coating an aged silica sol containing NaYF4:Tm, Yb, and Gd luminescent nanorods. The size and the spectral conversion properties of the NaYF4:Tm, Yb, and Gd luminescent nanorods were controlled by tuning the Gd3+ ion concentration. The microstructure and the transmittance properties of the thin film were controlled by changing the concentration of NaYF4:Tm, Yb, and Gd luminescent nanorod in silica sol. The thin films have excellent spectral conversion properties while exhibiting a maximum transmittance. The photovoltaic performance of PSCs with NaYF4:Tm, Yb, and Gd luminescent nanorod/silica nanosphere-based thin films was systematically investigated. The light transmittance was optimized to 95.1% on a cleaned glass substrate, which resulted in an average increase of about 3.0% across the broadband range of 400-800 nm. The optimized films widen the spectrum of light absorbed by conventional PSC cells and reduce reflections across a broad range, enhancing the photovoltaic performance of PSCs. As a result, the PCE of the PSC increased from 14.51% for the reference device without a thin film to 15.67% for the PSC device with an optimized thin film. This study presents a comprehensive solution to the problem of Fresnel reflection and spectral response mismatch of the PSCs, which provides new ideas for the light management of PSCs.

Keywords: NaYF4; SiO2; antireflection coating; perovskite solar cells; spectral conversion.