Microenvironment Regulation Strategies Facilitating High-Efficiency CO2 Electrolysis in a Zero-Gap Bipolar Membrane Electrolyzer

ACS Appl Mater Interfaces. 2023 Nov 22;15(46):53429-53435. doi: 10.1021/acsami.3c10817. Epub 2023 Nov 13.

Abstract

In alkaline and neutral zero-gap CO2 electrolyzers, the carbon utilization efficiency of the electrocatalytic CO2 reduction to CO is less than 50% because of inherently homogeneous reactions. Utilization of the bipolar membrane (BPM) electrolyzer can effectively suppress (bi)carbonate formation and parasitic CO2 losses; however, an excessive concentration of H+ in the catalyst layer (CL) significantly hinders the activity and selectivity for CO2 reduction. Here, we report a microenvironment regulation strategy that controls the CL thickness and ionomer content to regulate local CO2 transport and the local pH within the CL. We report 80% faradaic efficiency of CO at a current density of 400 mA/cm2 without the use of a buffering layer, exceeding that of state-of-the-art catalysts with a buffering layer. A carbon utilization efficiency of 63.6% at 400 mA/cm2 is also obtained. This study demonstrates the significance of regulating the microenvironment of the CL in a BPM system.

Keywords: bipolar membrane; carbon utilization efficiency; electrochemical CO2 reduction reaction; local CO2 transport; local pH.