Caveolin-1 forms a complex with P2X7 receptor and tunes P2X7-mediated ATP signaling in mouse bone marrow-derived macrophages

Am J Physiol Cell Physiol. 2024 Jan 1;326(1):C125-C142. doi: 10.1152/ajpcell.00303.2023. Epub 2023 Nov 13.

Abstract

The ionotropic purinergic P2X7 receptor responds to extracellular ATP and can trigger proinflammatory immune signaling in macrophages. Caveolin-1 (Cav-1) is known to modulate functions of macrophages and innate immunity. However, it is unknown how Cav-1 modulates P2X7 receptor activity in macrophages. We herein examined P2X7 receptor activity and macrophage functions using bone marrow-derived macrophages (BMDMs) from wild-type (WT) and Cav-1 knockout (KO) mice. ATP (1 mM) application caused biphasic increase in cytosolic [Ca2+] and sustained decrease in cytosolic [K+]. A specific P2X7 receptor blocker, A-740003, inhibited the maintained cytosolic [Ca2+] increase and cytosolic [K+] decrease. Total internal reflection fluorescent imaging and proximity ligation assays revealed a novel molecular complex formation between P2X7 receptors and Cav-1 in WT BMDMs that were stimulated with lipopolysaccharides. This molecular coupling was increased by ATP application. Specifically, the ATP-induced Ca2+ influx and K+ efflux through P2X7 receptors were increased in Cav-1 KO BMDMs, even though the total and surface protein levels of P2X7 receptors in WT and Cav-1 KO BMDMs were unchanged. Cell-impermeable dye (TO-PRO3) uptake analysis revealed that macropore formation of P2X7 receptors was enhanced in Cav-1 KO BMDMs. Cav-1 KO BMDMs increased ATP-induced IL-1β secretion, reactive oxygen species production, Gasdermin D (GSDMD) cleavage, and lactate dehydrogenase release indicating pyroptosis. A-740003 completely prevented ATP-induced pyroptosis. In combination, these datasets show that Cav-1 has a negative effect on P2X7 receptor activity in BMDMs and that Cav-1 in macrophages may contribute to finely tuned immune responses by preventing excessive IL-1β secretion and pyroptosis.NEW & NOTEWORTHY In bone marrow-derived macrophages, Cav-1 suppresses the macropore formation of P2X7 receptors through their direct or indirect interactions, resulting in reduced membrane permeability of cations (Ca2+ and K+) and large cell-impermeable dye (TO-PRO3) induced by ATP. Cav-1 also inhibits ATP-induced IL-1β secretion, ROS production, GSDMD cleavage, and pyroptosis. Cav-1 contributes to the maintenance of proper immune responses by finely tuning IL-1β secretion and cell death in macrophages.

Keywords: ATP; P2X7; calcium channel; caveolin-1; macrophage.

MeSH terms

  • Adenosine Triphosphate / metabolism
  • Adenosine Triphosphate / pharmacology
  • Animals
  • Caveolin 1* / genetics
  • Caveolin 1* / metabolism
  • Interleukin-1beta / metabolism
  • Macrophages / metabolism
  • Mice
  • Receptors, Purinergic P2X7* / metabolism

Substances

  • (N-(1-(((cyanoimino)(5-quinolinylamino) methyl) amino)-2,2-dimethylpropyl)-2-(3,4-dimethoxyphenyl)acetamide)
  • Adenosine Triphosphate
  • Caveolin 1
  • Interleukin-1beta
  • Receptors, Purinergic P2X7
  • Cav1 protein, mouse
  • P2rx7 protein, mouse