NeuroD1 administration ameliorated neuroinflammation and boosted neurogenesis in a mouse model of subarachnoid hemorrhage

J Neuroinflammation. 2023 Nov 12;20(1):261. doi: 10.1186/s12974-023-02949-w.

Abstract

Background: Subarachnoid hemorrhage (SAH) causes significant long-term neurocognitive dysfunction, which is associated with hippocampal neuroinflammation. Growing evidences have shown that astrocytes played a significant role in mediating neuroinflammation. Recently, in vivo reprogramming of astrocytes to neurons by NeuroD1 or PTBP1 administration has generated a lot of interests and controversies. While the debates centered on the source of neurogenesis, no attention has been paid to the changes of the astrocytes-mediated neuroinflammation and its impact on endogenous neurogenesis after NeuroD1 administration.

Methods: 80 adult male C57BL/6 mice were used in this study. SAH was established by pre-chiasmatic injection of 100 μl blood. AAV-NeuroD1-GFP virus was injected to the hippocampus 3 day post-SAH. Neurocognitive function, brain water content, in vivo electrophysiology, Golgi staining, western blot and immunofluorescent staining were assessed at day 14 post-virus injection.

Results: NeuroD1 administration markedly attenuated reactive astrocytes-mediated neuroinflammation by reversing neurotoxic A1 astrocytes transformation, decreasing the secretion of neuroinflammatory cytokines, and reducing the activation of harmful microglia. NeuroD1 treatment significantly reversed the brain-blood barrier impairment and promoted the release of neurotrophic factors pleiotrophin (PTN), all of which contributed to the improvement of cellular microenvironment and made it more suitable for neurogenesis. Interestingly, besides neurogenesis in the hippocampus from cells transfected with NeuroD1 at the early phase of SAH, NeuroD1 administration significantly boosted the endogenous neurogenesis at the late phase of SAH, which likely benefited from the improvement of the neuroinflammatory microenvironment. Functionally, NeuroD1 treatment significantly alleviated neurocognitive dysfunction impaired by SAH.

Conclusions: NeuroD1 significantly promoted neurofunctional recovery by attenuating reactive astrocytes-mediated neuroinflammation and boosting neurogenesis decimated by SAH. Specifically, NeuroD1 efficiently converted transfected cells, most likely astrocytes, to neurons at the early phase of SAH, suppressed astrocytes-mediated neuroinflammation and boosted endogenous neurogenesis at the late phase of SAH.

Keywords: Astrocyte; NeuroD1; Neurocognitive function; Neurogenesis; Neuroinflammation; Subarachnoid hemorrhage.

MeSH terms

  • Animals
  • Brain
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Neurogenesis / physiology
  • Neuroinflammatory Diseases*
  • Subarachnoid Hemorrhage* / complications
  • Subarachnoid Hemorrhage* / drug therapy