Diatomic iron nanozyme with lipoxidase-like activity for efficient inactivation of enveloped virus

Nat Commun. 2023 Nov 11;14(1):7312. doi: 10.1038/s41467-023-43176-4.

Abstract

Enveloped viruses encased within a lipid bilayer membrane are highly contagious and can cause many infectious diseases like influenza and COVID-19, thus calling for effective prevention and inactivation strategies. Here, we develop a diatomic iron nanozyme with lipoxidase-like (LOX-like) activity for the inactivation of enveloped virus. The diatomic iron sites can destruct the viral envelope via lipid peroxidation, thus displaying non-specific virucidal property. In contrast, natural LOX exhibits low antiviral performance, manifesting the advantage of nanozyme over the natural enzyme. Theoretical studies suggest that the Fe-O-Fe motif can match well the energy levels of Fe2 minority β-spin d orbitals and pentadiene moiety π* orbitals, and thus significantly lower the activation barrier of cis,cis-1,4-pentadiene moiety in the vesicle membrane. We showcase that the diatomic iron nanozyme can be incorporated into air purifier to disinfect airborne flu virus. The present strategy promises a future application in comprehensive biosecurity control.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alkadienes*
  • Antiviral Agents
  • Humans
  • Influenza, Human*
  • Iron
  • Lipoxygenase
  • Viruses*

Substances

  • Antiviral Agents
  • Lipoxygenase
  • Iron
  • Alkadienes