Comparing the sensitivity of aquatic organisms relative to Daphnia sp. toward essential oils and crude extracts: A meta-analysis

Sci Total Environ. 2024 Jan 15:908:168467. doi: 10.1016/j.scitotenv.2023.168467. Epub 2023 Nov 10.

Abstract

Interest on aromatic and medicinal plants (AMP)-based products, especially crude extracts (CE) and essential oils (EO), has increased over recent years due to their bioactive and biopesticide properties, though a variety of these compounds is environmentally damaging. Aquatic organisms can easily be exposed to the toxicological risks of AMP-based products, but research exploring existing ecotoxicity data to non-target organisms is limited. The present study aimed to, for the first time, systematically review published evidence on the acute/short-term toxicity (LC50, EC50 or IC50) of CE and EO from AMP, comparing sensitivity of aquatic organisms. Eleven studies that reported the sensitivity of aquatic taxa and Daphnia sp. to CE and/or EO, were included in the review, contributing with 27 effect sizes, calculated as the response ratio R (EcotoxicityAquatTaxa/EcotoxicityDaphnia). Meta-analytic technics were used to estimate the overall sensitivity of aquatic taxa relative to Daphnia sp. while identifying moderators [plant preparation (CE or EO), extraction type, plant part, plant family, and aquatic taxa identity] potentially affecting relative sensitivities. The overall effect size R was 1.51 (95 % CI = 0.97 to 2.34, N = 27), indicating a non-significant difference in the toxicity of CE and EO to aquatic taxa relative to Daphnia sp. However, the high heterogeneity among individual effect sizes (I2 = 99 %) suggested opposing responses of aquatic taxa relative to Daphnia sp. The magnitude of effects (R) was strongly influenced only by plant family. Daphnia sp. arose as a potential model organism for assessing the ecotoxicity of CE and EO, along with the fish Danio rerio and the crustacean Thamnocephalus platyurus, while Artemia sp. seems a relevant alternative for a preliminary screening. Likewise, the current study sheds light on the (underestimated) toxicity of CE and EO to aquatic ecosystems and that much remains to be uncovered, providing insights and recommendations for future research.

Keywords: Acute/short-term ecotoxicity; Aquatic standard species; Aromatic and medicinal plants; Response ratio; Systematic review.

Publication types

  • Meta-Analysis

MeSH terms

  • Animals
  • Aquatic Organisms
  • Daphnia
  • Ecosystem
  • Oils, Volatile* / toxicity
  • Plants
  • Water Pollutants, Chemical* / toxicity
  • Zebrafish

Substances

  • Oils, Volatile
  • Water Pollutants, Chemical