IP-DNQ induces mitochondrial dysfunction and G2/M phase cell cycle arrest to selectively kill NQO1-positive pancreatic cancer cells

Antioxid Redox Signal. 2023 Nov 11. doi: 10.1089/ars.2022.0224. Online ahead of print.

Abstract

Pancreatic cancer is among the top five leading causes of cancer-related deaths worldwide, with low survival rates. Current therapies for pancreatic cancer lack tumor specificity, resulting in harmful effects on normal tissues. Therefore, developing tumor-specific agents for the treatment of pancreatic cancer is critical. NAD(P)H:quinone oxidoreductase 1 (NQO1), highly expressed in pancreatic cancers but not in normal tissues, makes NQO1 bioactivatable drugs a potential therapy for selectively killing NQO1-positive cancer cells. Our previous studies have revealed that novel NQO1 bioactivatable drug deoxynyboquinone (DNQ) is ten-fold more potent than the prototypic NQO1 bioactivatable drug β-lapachone in killing of NQO1-positive cancer cells. However, DNQ treatment results in high-grade methemoglobinemia, a significant side effect that limits clinical development. Here, we report for the first time on a DNQ derivative, isopentyl-deoxynboquinone (IP-DNQ), which selectively kills pancreatic ductal adenocarcinoma cells in an NQO1-dependent manner with equal potency to the parent DNQ. IP-DNQ evokes massive ROS production and oxidative DNA lesions that results in PARP1 hyperactivation, mitochondrial catastrophe and G2/M-phase arrest, leading to apoptotic and necrotic programmed cell death. Importantly, IP-DNQ treatment causes mild methemoglobinemia in vivo, with a three-fold improvement in the maximum tolerated dose compared to DNQ, while significantly suppresses tumor growth and extends the lifespan of mice in subcutaneous and orthotopic pancreatic cancer xenograft models. Our study demonstrates that IP-DNQ is a promising therapy for NQO1-positive pancreatic cancers and may enhance the efficacy of other anticancer drugs. IP-DNQ represents a novel approach to treating pancreatic cancer with the potential to improve patient outcomes.