Electrocatalytic hydrogenation of indigo by NiMoS: energy saving and conversion improving

Dalton Trans. 2023 Nov 28;52(46):17438-17448. doi: 10.1039/d3dt02272b.

Abstract

An NiMo alloy bonded with sulfur (NiMoS) exhibits enhanced surface affinity toward water and organic molecules, thereby enhancing electrocatalytic hydrogenation (ECH) reactions through synergistic effects. In industrial processes, indigo, an ancient dye employed in the denim industry, is typically chemically reduced using sodium dithionite. However, this process generates an excess of toxic sulfide, which heavily contaminates the environment. ECH is a sustainable alternative for indigo reduction due to its reduced reliance on chemicals and energy consumption. In this study, carbon-felt (CF)-supported NiMoS was synthesized in a two-step process. First, the NiMo alloy was electrodeposited onto the CF surface, followed by sulfidation in an oven at 600 °C. NiMoS exhibits a larger electrochemically active surface area and a smaller charge transfer resistance compared to pure Ni and NiMo. Furthermore, NiMoS demonstrates excellent thermodynamic and kinetic properties for water splitting in strong alkaline solutions (1.0 M KOH). Additionally, optimal reaction conditions for the ECH of indigo were explored. Under the conditions of a 1.0 M KOH hydroxide medium with 10% methanol (v/v), an indigo concentration of 5 g L-1, a reaction temperature of 70 °C, and a current density of 10 mA cm-2, NiMoS/CF achieved remarkable improvements in both conversion (99.2%) and Faraday efficiency (38.1%). The results of this experimental work offer valuable insights into the design and application of novel catalytic materials for the ECH of vat dyes, opening up new possibilities for sustainable and environmentally friendly processes in the dye industry.