Adenosine-induced splenic switch-off on [15O]H2O PET perfusion for the assessment of vascular vasodilatation

EJNMMI Res. 2023 Nov 9;13(1):96. doi: 10.1186/s13550-023-01045-7.

Abstract

Background: Splenic switch-off (SSO) is a marker of adequate adenosine-induced vasodilatation on cardiac magnetic resonance perfusion imaging. We evaluate the feasibility of quantitative assessment of SSO in myocardial positron emission tomography (PET) perfusion imaging using [15O]H2O.

Methods: Thirty patients underwent [15O]H2O PET perfusion with adenosine stress. Time-activity curves, as averaged standardized uptake values (SUVavg), were extracted from dynamic PET for spleen and liver. Maximum SUVavg, stress and rest spleen-to-liver ratio (SLR), and the splenic activity concentration ratio (SAR) were computed. Optimal cut-off values for SSO assessment were estimated from receiver operating characteristics (ROC) curve for maximum SUVavg and SLR. Also, differences between coronary artery disease, myocardial ischemia, beta-blockers, and diabetes were assessed. Data are presented as median [interquartile range].

Results: In concordance with the SSO phenomenon, both the spleen maximum SUVavg and SLR were lower in adenosine stress when compared to rest perfusion (8.1 [6.5, 9.2] versus 16.4 [13.4, 19.0], p < 0.001) and (0.81 [0.63, 1.08] versus 1.86 [1.73, 2.06], p < 0.001), respectively. During adenosine stress, the SSO effect was most prominent 40-160 s after radiotracer injection. Cut-off values of 12.6 and 1.57 for maximum SUVavg and SLR, respectively, were found based on ROC analysis. No differences in SAR, SLRRest, or SLRStress were observed in patients with coronary artery disease, myocardial ischemia, or diabetes.

Conclusions: SSO can be quantified from [15O]H2O PET perfusion and used as a marker for adequate adenosine-induced vasodilatation response. In contrary to other PET perfusion tracers, adenosine-induced SSO is time dependent with [15O]H2O.

Keywords: Adenosine, coronary artery disease; Myocardial perfusion imaging; Positron emission tomography; Radiowater; Stress testing.